eCodonOpt: a systematic computational framework for optimizing codon usage in directed evolution experiments.
نویسندگان
چکیده
We present a systematic computational framework, eCodonOpt, for designing parental DNA sequences for directed evolution experiments through codon usage optimization. Given a set of homologous parental proteins to be recombined at the DNA level, the optimal DNA sequences encoding these proteins are sought for a given diversity objective. We find that the free energy of annealing between the recombining DNA sequences is a much better descriptor of the extent of crossover formation than sequence identity. Three different diversity targets are investigated for the DNA shuffling protocol to showcase the utility of the eCodonOpt framework: (i) maximizing the average number of crossovers per recombined sequence; (ii) minimizing bias in family DNA shuffling so that each of the parental sequence pair contributes a similar number of crossovers to the library; and (iii) maximizing the relative frequency of crossovers in specific structural regions. Each one of these design challenges is formulated as a constrained optimization problem that utilizes 0-1 binary variables as on/off switches to model the selection of different codon choices for each residue position. Computational results suggest that many-fold improvements in the crossover frequency, location and specificity are possible, providing valuable insights for the engineering of directed evolution protocols.
منابع مشابه
Identification of Synonymous Codon Usage Bias in the Pseudorabies Virus UL31 Gene
Background: Little knowledge of synonymous codon usage pattern of pseudorabies virus (PRV) genome, especially the UL31 gene in the process for its evolution is available. Objectives: In the present study, the codon usage bias between PRV UL31 sequence and the UL31-like sequences was identified. Materials and Methods: We used a comprehensive analysi...
متن کاملMutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کاملThe Relation of Codon Bias to Tissue-Specific Gene Expression in Arabidopsis thaliana
The codon composition of coding sequences plays an important role in the regulation of gene expression. Herein, we report systematic differences in the usage of synonymous codons among Arabidopsis thaliana genes that are expressed specifically in distinct tissues. Although we observed that both regionally and transcriptionally associated mutational biases were associated significantly with codo...
متن کاملP-128: Optimization of Human LH Gene Expression by Codon Usage Adaptation in CHO Cell Line
a:4:{s:10:"Background";s:897:"Human luteinizing hormone (hLH) belongs to glycoprotein hormones which is composed of two non-covalently linked subunit, α and β. The α-subunit is similar in all glycoprotein hormones, whereas the β-subunit is conferring the hormonal specificity. This hormone has important roles in the growth and maturity of sexual organs and secondary sexual characteristics and st...
متن کاملEmerging engineering principles for yield improvement in microbial cell design
Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 30 11 شماره
صفحات -
تاریخ انتشار 2002